
DESIGN AND IMPLEMENTATION OF A
RING INTERFACE/HOST ADAPTER

FOR AN IBM SYSTEM 360

Eberhard Otto Wortmann

s)0

OUDLtY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOUJ,

MONTEREY. CALIFORNIA 93940

o TJ" b S%Z$ f

terey, California

:. iuu L

fi I Laos «te*s^ B

DESIGN AND IMPLEMENTATION OF A
RING INTERFACE/HOST ADAPTER

FOR AN IBM SYSTEM 360

by

Eberhard Otto Wortmann

June 197 1
?

Thesis Advisor : R.H. Brubaker,J

Approved for public release; distribution unlimited.

jlCXSfc

UNCLASSIFIED
SECURITY CL OSSIFICATION OF THIj PAGF (Klien Data Enterrd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Design and Implementation of a Ring
Interface/Host Adapter for an IBM
System 36O

S V.TYPE 0F FEPOr97 * PERIOD COVERED
Master's Thesis;
June 197^

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfa)

Eberhard Otto Wortmann

8. CONTRACT OR GRANT NUMBER(«)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 939^0

10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6. WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS
Naval Postgraduate School
Monterey, California 939^0

12. REPORT DATE
June 197^
13. NUMBER OF PAGES

. 86
1*. MONITORING AGENCY NAME & ADDRESSf// dltteront from Controlling Office)

Naval Postgraduate School
\ Monterey, California 939^0

15. SECURITY CLASS, (ol thla report)

Unclassified

15«. DECLASSIFICATION/DOWNGRAOING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract entered in Block 20, 11 different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Confinuo on reverse aide It neceetary and Identify by block number)

Ring communication network
ring interface/host adapter

20. ABSTRACT (Continue or, reverse tide it neceatary and Identify by block number)

At the Naval Postgraduate School a project is underway
to develop a ring communication network which will eventually
connect various computer facilities on the campus. The main

;

emphasis is put on modularity to increase design flexibility
and keep cost low. Therefore all host/ring interface
functions are performed by a general purpose Ring Interface
which then is adapted to its specific host by a device called

1 C ° mmmm,mmm ,. ,|l..|„ II. .111111
—™»

DD { JAN*73 1473 EDITION OF 1 NOV 6S IS OBSOLETE

(Page 1) S/N 0102-014-6601
I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (&*>•<* D*<* 8"'*"*

UNCLASSIFIED
I'tCUKITY CLASSIFICATION OF THIS PAGEfHTiMl D»f« Enle

(20. ABSTRACT continued)

the "Ring Interface/Host Adapter." Here the design and
implementation of an adapter is described that matches the
Ring Interface to the Naval Postgraduate School's IBM System
360/67. The heart of the adapter is a programmed control unit
or "microcontroller" with an assembler-level programming
language, SMAL.

DD Form 1473 (BACK)
1 J;m 73

^
TTMPT.ASSTFTF.n

S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGEr**<>^ D.<« Enffd)

Design and Implementation of a
Ring Interface/Host Adapter

for an IBM System 360

by

Eberhard Otto^Wortmann
Lieutenant Commander, Federal German Navy
Ing.(grad.) Fachhochschule Hamburg, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1974

c/

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY

ABSTRACT

At the Naval Postgraduate School a project Is underway

to develop a ring communication network which will even-

tually connect various computer facilities on the campus.

The main emphasis is put on modularity to increase design

flexibility and keep cost low. Therefore all host/ring

interface functions are performed by a general purpose Ring

Interface which then is adapted to its specific host by a

device called the "Ring Interface/Host Adapter." Here the

design and implementation of an adapter is described that

matches the Ring Interface to the Naval Postgraduate School's

IBM System 360/67. Tne heart of the adapter is a programmed

control unit or "microcontroller" with an assembler-level

programming language, SMAL.

TABLE OF CONTENTS

I. INTRODUCTION 8

A. THE BASIC CONCEPT 8

1. Initial Considerations 8

2. Basic Design Considerations 8

B. TERMINOLOGY 10

II. DEFINITION OF THE RING INTERFACE/HOST ADAPTER 12

A. HOST PROCESSOR CONTROL OF RING INTERFACE 13

1. Connect/Disconnect Sequence --13

2. Reset Sequence 13

3. Alter Process Name 13

B. DATA TRANSFER 14

1. The Receive Sequence 14

2. The Transmit Sequence 14

3. Interference of Receive and Transmit 15

III. THE PLANNING PHASE 16

A. PRELIMINARY CONSIDERATIONS 16

B. ORIGINAL APPROACH 16

C. REVISED APPROACH 17

IV. REALISATION OF A RI/HOST ADAPTER — 18

A. GENERAL OUTLINE 18

1. The Interface and Logic Support 18

2. Speed Considerations - The FIFO-Buffer 18

3. Utilization of FIFO-Buffer 20

4. The RIHA 22

B. THE PDA INTERFACE LINES — 22

1. Data Lines 22

2. Control Lines 22

C. THE RING INTERFACE CONNECTIONS 26

1. Data Lines 26

2. Control Lines 27

a. The Receive Group 27

b. The Transmit Group 28

c. The Local Command Group 29

d. The Status Byte 30

D. THE FIFO BUFFER 32

E. THE MESSAGE FORMAT 3^

F. THE MICROCONTROLLER 36

1. General Description 36

2. The RIHA Microcontroller Program 37

a. The Language 37

b. The Program Logic ^0

V. RECOMMENDATIONS AND CONCLUSIONS 50

A. RECOMMENDATIONS 50

B. CONCLUSIONS 50

BIBLIOGRAPHY 85

INITIAL DISTRIBUTION LIST 86

LIST OF FIGURES

1. Envisioned Ring Communication Network 9

2. Conceptual Configuration of a Ring
Interface/Host Adapter 12

3. Block Diagram of Ring Interface/Host Adapter 21

4 . Interface Data Lines : 23

5. Interface Control Lines 24

6. FIFO Buffer Architecture 32

7. Message Formats 35

8. Directed Graph of Sequence Initiation Hi

9. Directed Graph of Receive Sequence 42

10. Directed Graph of Transmit Sequence 45

11. Jump External 48

12. Block Diagram of the Microcontroller Architecture - 52

13. The Microcontroller Instruction Format 53

14. The Microcontroller Circuitry 54

15. Jump External Feature 55

16. Layout of RIHA Board 56

17- Layout of RIHA Microcontroller 57

18. RIHA Circuitry I 58

19. RIHA Circuitry II 59

20. RIHA Pin Assignments 60

I. INTRODUCTION

A. THE BASIC CONCEPT

1 . Initial Considerations

In recent years the ideal of "modularization" has

gained much popularity in the area of Computer Science

because of its advantages with respect to design flexibility

and reduction of cost. Since cost and flexibility were

main considerations in this project, heavy emphasis was

placed on a modular approach. In addition to this, soft-

ware (or "firmware") was to replace hardware wherever

possible since it could be produced locally at low cost

and it would further increase design flexibility.

2 . Basic Design Decisions

Figure 1 shows a conceivable ring communication

configuration, where a "node" is defined as a host processor

together with its ring interface. Though different processors

would be connected to the ring, the functions performed by

each RI were to be the same at all nodes:

Data and control tokens traveling along the ring
had to be received, evaluated, and retransmitted.

Certain checking functions had to be performed and
status information had to be sent to the host
processor.

Control signals from the host processor had to be
acknowledged and complied with.

Therefore, the concept of a Ring Interface eventually evolved,

which would incorporate all these functions in the most

NOVA-
MLnl

PDP-11/50

yvvvv,

AAAAA
Terminal
Controller

File Storage

node

Pig. 1. Envisioned Ring Communication Network

efficient manner independent of any host processor. In

consequence of this each host processor would be communi-

cating with its Ring Interface via a device which would

adapt the general purpose Ring Interface to the host's

specific needs. (Some hosts may be directly connectable

to the RI, and programmatically execute the necessary

control sequences.) The unit performing this role will be

called Ring Interface/Host Adapter (RIHA).

B. TERMINOLOGY

Where adequate in this text the following abbreviations

will be used:

Hardware Units

Ring Interface
Ring Interface/Host Adapter
Parallel Data Adapter

Control Lines

Receive
Ring Data Ready
Host Accept
Transmit
Ring Demand
Host Data Ready
Alter Process Name
Write Name
Disconnect
RI Reset
Receive CRC Error
Receive Overrun
Transmit CRC Error
Transmit Overrun
Message Bit 1

Message Bit 2

Ring Error
Ring Disconnected
Ring Data Out (8)
Ring Data In (8)

RI
RIHA
PDA

RCV
RDR
HA
XMIT
RID
HDR
APN
WRTN
DISC
RESET
RCRC
ROVR
XCRC
XOVR
MSB1
MSB 2

RERR
RDISC
RDO
RDI

10

To facilitate understanding the following terms v/ill

be used in a unique sense throughout this text.

TRANSMIT-SEQUENCE : Transfer of data from PDA to RI

ACCEPT: Transfer of data from PDA into RIHA

DELIVER: Transfer of data from RIHA to RI

RECEIVE-SEQUENCE : Transfer of data from RI to PDA

RECEIVE: Transfer od data from RI into RIHA

RELEASE: Transfer of data from RIHA to PDA

11

II. DEFINITION OF THE RING INTERFACE/HOST ADAPTER

Figure 2 shows the conceptual configuration of a RIHA

consisting of a Ring Interface (RI) attached to the ring

and an I/O performing part of the host processor on the

other end with the adapter in between in the role of an

interpreter.

HOST I/O UNIT
RI/HOST
ADAPTER

T->T>T/-!
ruiNU

INTERFACE

Fig. 2. Conceptual Configuration of a Ring
Interface/Host Adapter

As mentioned in the introduction all functional requirements

to connect any host to the ring will be performed by the

Ring Interface. While exploring the necessary exchange of

information between Ring Interface and Host on a conceptual

12

level, the range of tasks the Adapter has to handle will

be defined.

A. HOST PROCESSOR CONTROL OF RING INTERFACE

To enable the host processor and the Ring Interface

(RI) to communicate successfully with each other and to

execute required procedures, certain control sequences

must be established.

1

.

Connect/Disconnect Sequence

This sequence provides the host processor with the

ability to inform its RI that for some reason the host wants

to disconnect from the ring. The required action on the

part of the RI will be to step out of the ring by providing

a route to the ring data by-passing this interface. At any

later time, a signal sequence issued by some process inside

the host can cause the RI to switch itself into the ring.

2

.

Reset Sequence

When the host ties up the. ring with too long a

message or by an error, the RI will disconnect from the ring

automatically. The only way to get it back into the ring

is by notifying the RIHA. (For more details see discussion

of Rl-Control Lines.)

3

.

Alter Process Name

One of the RI tasks is to constantly watch whether

a message being transmitted onto the ring by any other RI

is addressed to a process residing at its host. For this

13

purpose the RI keeps a list of process names. One signal

sequence the host must be able to send to the RI will

therefore contain the name of a process and the command

either to place this name into its associative memory of

process names or to delete it from the list.

Before switching the RI into the ring the normal

procedure would be to delete all possible process names

and set the list to the new valid names. It is essential

that all names be deleted after a power-on sequence, since

the memory contents are random at that time.

B. DATA TRANSFER

While data and control tokens on the ring move in one

direction only, information between the RI and the host

will go both ways. The Adapter therefore will have to

handle three situations:

1. The Receive Sequence

When the RI detects a message on the ring whose

address header specifies a process residing at its host,

it alerts the host to receive it: the Adapter activates

a Receive Sequence.

2. The Transmit Sequence

When the host intends to transmit a message to a

process residing at one or several of the other nodes it

signals the RI about it: the Adapter activates a Transmit

Sequence

.

14

3. Interference of Receive and Transmit

When either the RI wants the host to receive a

message from the ring while the host is waiting to get a

message transmitted or when the RI has already asked for

a Receive-Sequence when the host wants to Initiate a Trans-

mit Sequence: the Adapter has to be equipped to make a

decision which to handle first.

15

III. THE PLANNING PHASE

A. PRELIMINARY CONSIDERATIONS

Before the author started design work on this Adapter,

a thesis on a prototype ring-structured computer network

had been completed by HIrt [3J. In their research for

ways to systematize the overall approach, members of the

Computer Science Group at this school developed the idea

that for the design of a standardized RI as well as for

building the adapters for the different computers employed

by various academic departments, the availability of a

general purpose microcontroller, programmable to diverse

applications would simplify the design as well as the

testing of these devices and would accelerate the whole

project. Therefore such a controller was developed by

Brubaker with Harris [1].

As further steps in an organized approach a language

called SMAL evolved to facilitate programming each micro-

controller and an assembler for this language was written

by Kildall [2] in PL/M [4] to run on the Intellec-8 or

Intellec 80 developmental system [5].

B. ORIGINAL APPROACH

Since thesis work on the standardized ring interface

[6] and this Adapter was begun at the same time, the exact

requirements of the RI were not initially available.

16

Therefore, emphasis of this thesis was first placed on

investigating; the host's I/O requirements, in this case

the multiplexor channel of an IBM System 360/67. An IBM

OEM Interface manual [7] was used as a source of information.

It was decided to build the Adapter in such a way that it

would connect to the IBM channel as an IBM Control Unit.

Since it would not be possible to test the Adapter by con-

necting it to the channel in its system environment because

of IBM hardware regulations and user demand on the System

360, a program was written in PL/M for an MCS-8 microcomputer

which incorporated the channel logic and would serve to

test the Adapter by simulating the channel.

After a number of weeks on this approach, the N-?val

Postgraduate School's Computer Facility received word that

it would be able to acquire an IBM 2701 Transmission Control

Unit with a Parallel Data Adapter [8,9]. This would

1. reduce the complexity of the RI/Host Adapter

2. simplify the electrical requirements and standards.

C. REVISED APPROACH

Under these circumstances a new start was made. The

host's requirements were taken from IBM manuals about the

Parallel Data Adapter. The Ring Interface's control and

data lines were defined by now and the paper about the

mi-crocontroller was available [1].

17

IV. REALIZATION OF A RI/HOST ADAPTER

To gain some first hand experience in this area the

author assembled one of the microcontrollers on a bread-

board using a wire wrapping technique. After this first

encounter with integrated logic chips the design of the

actual RIHA began.

A. GENERAL OUTLINE

1

.

The Interface and Logic Support

The control and data lines between the RIHA and its

environment were predefined by the requirements of PDA and

RI . On the inside there would be the microcontroller,

treated here as a black box, handling all sequencing re-

quirements through the ability to test the logic state of

incoming lines, to handle the sequencing of actions according

to these test results and its program, and to strobe certain

outgoing lines as required by the program while supplying

relevant data on its 8-bit data out bus.

2. Speed Considerations - The FIFO Buffer

One area where differences between the RI and its

host become apparent is their different speed. The RI has

to watch traffic on the ring either until a message for its

host arrives or until it obtains the ring to transmit a

message of 'its host onto the ring. When it eventually

starts to receive or transmit, its speed is determined

completely by the speed maintained on the ring. A byte of

18

data assembled from the ring and ready to be transferred

toward the host which is not accepted before the next byte

is ready for transfer constitutes an overrun condition.

Also, the last bit of a byte transmitted into the ring with

the next byte not yet available from the RI/Host Adapter

will cause an overrun error. Either case will necessitate

a retransmission of the message involved. On the Host side

of the RI/Host Adapter, acceptance or release of data

depends on the availability of the channel, which again is

affected by requests of other I/O devices supported by the

same channel. While the channel (and with it the PDA) is

normally faster than the Ring and is capable of asynchronous,

byte-by-byte conversation, it might be absent for an amount

of time causing an overrun error at the RI

.

Not to do anything about this problem and leave it

open' to chance was considered an unrealistic solution, since

frequent retransmission of a message would degrade perfor-

mance of the whole system. One way to solve the problem

would have been the adapter -to include a buffer memory into

which an incoming message would be written and only after

the complete message had been recorded it would be sent out

the other end. This way complete independence of RI and

PDA would be attaned. On the other hand, message length

on the ring would be limited by the size of the buffer in

the adapter. The third way, and the one finally chosen,

consists of a first-in-first-out (FIFO) buffer memory of

19

size 102*1 x 8 bits. Since many messages on the ring are

expected to be shorter than 102*4 bytes, for a large part

of the data transfer the advantage of independence of the

ring from the speed of the channel is conserved without

limiting transfer of data files or long messages. The FIFO

serves to smooth out the response of a sporadic channel and

to buffer an incoming message while waiting for the host to

begin accepting data (latency problem)

.

3. Utilization of FIFO Buffer

While data and control tokens on the ring move in

one direction only, information will go both ways through

the adapter. After having decided that the adapter should

incorporate a FIFO buffer, it was realized that it could

beneficially be used handling data in both directions. To

accomplish this a multiplexor was chosen and, by means of

the microprogram, input to the FIFO Buffer is switched to

the right paths. (For reference see Figure 3-) On the

output end of the buffer no such switching was necessary,

since either the PDA or the RI would be signaled for whom

data is ready on the data out lines.

To enable the Adapter to have two sequential data

bytes available, in parallel, to be released to the PDA

as a l6-bit word, an eight-bit buffer is placed onto the

out lines of the FIFO Buffer, into which one byte is locked

(latched) while the other is made available in parallel.

20

>

CQ

c
CM

CQ

-P

o

CQ

O

CQ

-P
w

MULTIPLEXOR

FIFO
BUFFER

m >

BUFFER OUT

-O

I

o

8

§
I—

I

K

Fig. 3. Block Diagram of Ring Interface/Host Adapter
(Microcontroller not shown)

21

l\. The RIHA

Information about the actual design of the RIHA

is contained in Figures 12 through 20. As mentioned above,

12 through Ik are taken from Ref. [1] which treats the

basic version of the microcontroller while figure 15 shows

the circuitry of the added Jump External (JEX) Feature.

Figures 16 through 20 contain information about the RIHA.

The circuitry shown in figures 18 and 19 is actually found

on one board as seen from figure 16.

All external connections of the RIHA are indicated

on figure 18 and all internal connections to the micro-

controller on figure 19. Figure 20 shows the pin assignment

for internal connection.

B. THE PDA INTERFACE LINES

The PDA Interface lines are discussed in detail in

Refs. [8] and [9]. The main points will be brought out here

1. Data Lines (see figure 4

)

In its basic form (which will be used at this

installation), the PDA supports 16 lines for output data

and the same number of lines for input data. In each case

a seventeenth line is provided for transfer of a parity bit

but' not utilized at this point.

2. Control Lines (see figure 5)

Write Select and Read Select are lines which are

raised by the PDA if the RIHA has been selected for a write-

type or read-type operation respectively. Either line will

stay up until the operation is completed.

22 '

RING INTERFACE

STATUS DATA OUT DATA IN
' rTTTTTT

Hihh MiiHt 1

RING INTERFACE/HOST

ADAPTER

'

i

1
i

1

i " " " H "

.1 *

SECOND FIRST SECOND FIRST
BYTE IN BYTE IN BYTE OUT BYTE OUT

PARALLEL DATA ADAPTER

Fig. k. Interface Data Lines

23

RING INTERFACE

a i 1 i ,

CD
O

i

cd a 1
cd
Cm -

^ > ;sK 0>
o

c
cc w

P
c

cd cd a co H
-P Cm p (X (D

p cd m p o g> g)
p>

> R 0) cu rc

B
£ o

•H P o p p cu £ aj
CD W C o

•rf
cc Pm IS

O C M < E R s
JSi 1 w u CD •P oK 5P p c P CD P CD o

C CO m c/: P H W w

s o Lj c iH u CD •Hw H K < >§ K R
'

1

RING INTERFACE/HOST

ADAPTER

i , , 1 i

o
u
CD

T3

•

-p II mo -P >> o CD

<D o T3 >? -P O r-\

i-l
CD

CDH cd
CD

t3
cd g

CD s P>

9
1

TO CD K & O
C/3 K o -Ci Cm Cm

bCD CD £ o O
-P T3 P 13 u CD

•d cd •IT1 cd u H •a -a P>

. £ CD

£ CD
rr;

o
^3

1

1

H

]PA]=IA]lillL DJ\Tl\ !\DJ\P^DEI*

w
CD

C
•H
Ml

H
O
M
P>
c
oO
CD

CJ

cd
Cm

U
CD

p
aH

LT\

•H

2^

The Write Ready line is raised in a write operation

and it notifies the RIHA that the next data word is ready

on the Output Data Bus. The RIHA may react in the following

ways:- Raising the Demand line means the data word has been

accepted. Raising End of Record (EOR) , End of File (EOF),

or Interrupt also resets the V.'rite Ready line, their

interpretation will be discussed later.

The Read Ready line is raised in a read operation

and signifies that the PDA is ready to take the next word

of data over the Input Data Bus. In this context raising

the Demand line tells the PDA that the next data word is

ready on the PDA Input Data Bus. Raising of EOR, EOF, or

Interrupt again resets the Read Ready line, but their

interpretation will be discussed later.

The line Word Count equals (WC = 0) is raised by

the PDA to indicate

in a write operation: the channel has no additional data
(normal ending of a write operation)

in a read operation: the channel will not take any more
data (if this happens during a
Receive Sequence it indicates an
error condition and is treated as
such)

.

In both cases the PDA expects EOR, EOF, or Interrupt to be

raised by the RIHA.

EOR and EOF both indicate that the RIHA has completed

its operation and will not generate or accept any additional

data. As a. reaction to either, the PDA presents Channel

End and Device End to the channel. With EOF, in addition

25

to the above, Unit Exception Status will be presented,

which can be used as an indication to the host software of

any error that may require a Status Request Message ' from

the CPU for more detailed information.

The Interrupt line is raised by the RIHA to preempt

a Transmit Sequence. When the host had raised WS and WR

and the RI is waiting for the ring to become available for

transmission, but a message for this host is detected on the

ring, then Interrupt is raised to advise the host to drop

its request for a Transmit Sequence for a moment and issue

a Read Command to first handle the incoming message.

Two further control lines supported by the PDA,

Redundancy Error and Suppress Parity Error, are not

utilized by the RIHA at this time.

C. THE RING INTERFACE CONNECTIONS

1. Data Lines (see figure *0

For data transfer between the RIHA and the RI an

8-bit data bus is provided in each direction. During a

Receive Sequence data is made available by the RI on one

bus and then the RIHA is informed that it may receive it.

When the RI signals during a Transmit Sequence that it is

ready for the next byte, data is put by the RIHA onto the

other bus and the RI is notified that host data is ready for

delivery.

26

2. Control Lines (see figure 5)

In figure 5 the control lines are graphically

grouped according to the direction in which information

is conveyed. Another way to group them on a functional

basis is the following:

Receive Group (lines used during a Receive Sequence)

RECEIVE (RCV)
RING DATA READY (RDR)
HOST ACCEPT (HA)

Transmit Group (lines used during a Transmit Sequence)

TRANSMIT (XMIT)
RING INTERFACE DEMAND (RID)
HOST DATA READY (HDR)

Local Command Group (lines used in reaction to a Local
Command Message)

ALTER PROCESS NAME (APN)
WRITE NAME (WRTN)
RESET RING INTERFACE (RESET)
DISCONNECT (DISC)

a. The Receive Group

RCV (from RI to RIHA)

Raising this line notifies the RIHA that a message for a

process residing on this host is coming in from the ring.

This logically puts the RIHA into the Receive Sequence.

If RCV is raised while the RIHA is in a Transmit Sequence

(waiting for the ring to become available for transmission)

it immediately notifies the host that it is going to abort

that sequence and will switch to the Receive Sequence. The

RCV line is only lowered after the last byte lias been

transferred to the RIHA.

27

RPR (from RI to RIHA)

Raising this line indicates that the next (or the first)

data byte is ready on the data bus to be received by the

RIHA. ' After the last data byte has been transferred to the

Adapter and RCV is lowered, the significance of RPR is

redefined as: Status Byte valid. RPR is never lowered

until HA is raised to preserve an interlocked "handshaking"

mode of operation.

HA (from RIHA to RI

)

Raising this line Implies that data from the bus has been

received. This causes RPR to fall. After transfer of the

last byte of data and lowering of RCV, HA is redefined as

:

Status Byte has been received. It is raised after RPR shows

Status Byte valid. This causes RPR to fall again allowing

HA to fall.

b . The Transmit Group

XMIT (from RIHA to RI)

Raising this line indicates that the host wants to transmit

a message onto the ring. It stays up until the last data

byte has been delivered to the RI or until a raised RCV

indicates preemption of the Transmit Sequence by an incoming

message. Preemption will only occur before the first byte

has been requested by the RI

.

RIP (from RI to RIHA)

The first' time this line goes up after XMIT has been raised

it implies that the ring became available for transmission.

28

It also notifies the Adapter that the RI is asking for the

delivery of a data byte. After the last data byte was

delivered and XMIT has been lowered RID is redefined to:

Status Byte valid. RID is lowered after HDR was raised and

the data byte was taken off the bus.

HDR (from RIHA to RI

)

This line is raised when the RI had asked for the next data

byte and this byte is ready for delivery on the data bus.

It allows RID to fall. After the last data byte was delivered

and XMIT has been lowered, HDR is redefined to: Validity of

Status Byte has been recognized. This allows RID to fall.

HDR is always lowered in reaction to the drop of RID.

c. Local Command Group

APN '(from RIHA to RI)

Raising this line indicates that a Local Command Message has

been received from the host which either instructs the RI to

delete a name from its list of process names or to insert

a new name, depending on the state of the WRTN line. After

APN has risen no change in WRTN is allowed.

WRTN (from RIHA to RI)

If this line is down, then the meaning of APN is: delete

the process whose name is on the data bus. If this line

is raised then the meaning of APN is: insert the process

whose name Is on the data bus into the list of valid process

names. Raising RID allows first WRTN and then APN to drop,

which in turn causes RID to go down.

29

DISC (from RIHA to RI)'

Raising of this line indicates that a Local Command Message

has been received from the host which instructs the RI to

disconnect from the ring. The RI may wait for an appropriate

moment to disconnect; whether It is connected or disconnected

is indicated at all times by the respective bit in the Status

Byte which can be asked for by the host issuing a Status

Request Message. Lowering of DISC lets the RI switch back

into the ring.

RESET (from RIHA to RI

)

This line is used for two purposes:

1. During the power-on procedure of the RI its micro-

controller is put to the start of its program by raising

this line.

2. During a Transmit Sequence; when the host ties up the

ring for too long a time the RI will automatically disconnect

from the ring and free it for other messages. The only way

to switch the RI back into the ring is by raising this line

first and then sending a Local Command Message to get the

RI connected again.

d. The Status Byte (8 lines from RI to RIHA)

The Status Byte consists of 8 bits which repre-

sent information about the state of the RI . Their signifi-

cance is:

Receive Group

S - CRC Error

S, - Overrun

30

Transmit Group

S„ - CRC Error

S_ - Overrun

S^ - MSB1

S,- - MSB2

Miscellaneous

Sg - Ring Error

S„ - Disconnected

For more details on these see Ref. [6].

The Status Byte is used in different ways

according to the sequence that the RIHA is executing:

Receive Sequence

After a message from the ring has been received and trans-

ferred to the host, the RIHA waits until the RT declares

the Status Byte to be valid and then appends one more 2-

byte word consisting of the Status Byte and a byte of zeros.

The same is done if the ring were that much faster than the

PDA to cause a Receive Overrun Error. In this manner the

receiving program inside the host gets all the RI status

information concerning that message.

Transmit Sequence

After a message has been transmitted onto the ring the RIHA

waits for the RI to declare the Status Byte to be valid

(after the message has circulated around the ring), and then

tests the Transmit Group to decide whether the message went

around the ring without errors. If this is the case, it

31

raises EOR, otherwise it raises EOF, which in addition to

Channel End and Device End lets the PDA present Unit Excep-

tion to the channel. In this manner the transmitting program

is informed whether the message correctly reached its desti-

nation or has to be retransmitted. This information about

what went wrong is acquired by sending a Request Status

Message from host to RIIIA.

D. THE FIFO BUFFER

The size of the FIFO buffer's memory was chosen to be

102^4 x 8 bits. It was designed to act as a "Fall-Through

Buffer." This means the first data that enters the buffer

seems to fall through and is immediately available on the

output side. This was accomplished in the following way

(for reference see Figure 6):

WRITE
s:

; COUNT
7

DAW> IN
7

WRITE COUNTER

1024 x 8

RAM
Ph

COUNTER
COMPARATOR«^4—

UNEQUAL

READ COUNTER
>

I
READ COUNT dat)(OUT

Fig. 6. FIFO BUFFER ARCHITECTURE

32

One 10-bit counter is used as a pointer to the memory loca-

tion next to be written into and another 10-bit counter

serves as pointer to the location from which to read the

next data byte. At the start both show zero, i.e., they

point to the same storage location. Therefore equality of

pointers implies an empty memory as long as nothing is read

from or written into memory. After each Read/Write operation

the respective counter is incremented and hence points to the

next cell to be read from/written into. Should the "Writes"

come faster than the "Reads," at some time (possibly after

several wrap-arounds) the Write Counter (WCNT) will point

to the cell which is also the next to be read from. There-

fore equality of counters after a Write operation indicates

an Overrun. On the other hand, if one or more "Writes" had

been previously executed, (i.e. the FIFO was partly filled)

equality of Read Counter (RCNT) and Write Counter (WCNT)

would imply: the "Reads" caught up with the "Writes."

The FIFO would be empty and the next operation has to be a

Write. To detect these various conditions a 10-bit compara-

tor was built, the result of which is true as long as the

counters point to different locations. It is false after

resetting both counters to zero at the start of any message

sequence as a measure to "erase" any buffer content.

If after each Write or Read operation in the RIHA pro-

gram, the related counter is incremented (which forces the

Counter-Not-Equal (CNTUNEQAL) line up) and care is taken

33

that at each start of a new sequence a "Write" is executed

first, then the following must be true:

A drop of CNTUNEQAL indicates after a

WRITE: WCNT has wrapped around and caught up with RCNT:
Overflow of FIFO Buffer

READ: RCNT caught up with WCNT: FIFO Buffer is empty.

E. THE MESSAGE FORMAT

Messages received by the RI from the ring for its host

are of no further concern to the RIHA . They are transferred

to the RIHA as 8-bit bytes one at a time, written into the

FIFO Buffer and later read from there to be prepared for

release to the host two bytes at a time as 16-bit words.

For more detail about ring message formats and protocols

see Ref. [6].

In the other direction, two types of messages have to

be discernible. A Local Command Message (LCM) , which is an

instruction or request from the host to the RI and has to be

interpreted by the RIHA, and the regular Transmit Message

(TM) to be sent over the ring. The LCM is required to con-

sist of two bytes where the first byte indicates the type

of LCM while the second may be used to supply additional

data. On the other hand, each TM sent by any host onto the

ring carries as its first two bytes the destination process

name and the source process name. Therefore even the short-

est possible message of this type consists of more than two

bytes. This fact is taken advantage of to distinguish

between LCM and TM as described below.

3^

The PDA raises WS to indicate that it wants to send a

message. Then WR is raised to signal the RIHA that the

first 16-bit word is ready on the data bus to be accepted

by the RI . After writing these first two bytes into its

FIFO Buffer the RIHA acknowledges acceptance by raising

Demand. This allows WR to drop. After transfer of the last

two bytes WC = is raised together with WR to inform the

RIHA that the CPU has no more data to transfer. Consequently

WC = will not be raised after the first two bytes of a

TM, or expressed the other way: if WC = goes up after

the first two bytes being transferred, then the message is

an LCM.

Figure 7 shows which types of messages are at this time

identifiable by the RIHA's program.

Insert Process Name

Delete Process Name

Disconnect from Ring

Connect to the Ring

Reset RI Microcontroller

Status Request Message

WRITE NAME

CLEAR NAME

DISCONNECT

CONNECT

RESETRI

STATREQU

Transmit Message DESTINATION SOURCE TEXT BYTE 1

Fig. 7. MESSAGE FORMATS

35

P. THE MICROCONTROLLER

1. General Description

The microcontroller j which represents the heart of

the Ring Interface/Host Adapter (RIHA), was designed at this

school for various similar applications by Assistant Profes-

sor Raymond H. Brubaker, Jr., with Mike Harris, whose thesis

topic was the development of the Ring Interface. A detailed

description of the microcontroller will be found in Ref. [1],

but the main features are reviewed here. Taken from that

reference and included in this text as Appendix A is a block

diagram of the microcontroller's architecture (Fig. 12),

its instruction format (Fig. 13) > the microcontroller's

circuitry (Fig. 1*0, and the added JEX feature circuitry

(Fig. 15).

The microcontroller's instruction set consists of

five instructions:

Output (OUT)

Jump Unconditional (JU)

Jump on True Input (JT)

Jump on False Input (JF)

Jump on External Input (JEX)

An OUT instruction displays data supplied by its

lower 8 bits on an 8-bit data out bus and then selects one

out of up to 32 output lines and concurrently strobes it

for a 100 nanosecond time interval.

On a JJJ instruction the program branches to any

location of its available memory that is specified in the

lower 13 bits of the instruction.

36

A JT or a JF_ Instruction selects one out of up to

32 input lines for a test. If the line is up with a JT or

down with a JF instruction, then the program branches to

the location on the same page that is specified in the 8

lower bits of the instruction. Otherwise the next sequen-

tial instruction is executed (with fall-through to the next

page possible)

.

The JEX instruction was added to the basic micro-

controller for its application in the RIHA. A drawing of

the circuitry is included as figure 15 . On a JEX command an

unconditional jump occurs to an address specified in the

instruction with the four low order bits modified by an out-

side source. In this application bits 4 through 7 are

extracted from the first byte of an incoming LCM and used

to differentiate between the possible message types.

Using these five instructions a program may be

written whose flow can be varied according to up to 32

input variables and which generates a sequence of output

signals that select one of up to 32 "devices" with data

displayed on the out bus to further control these devices.

2. The RIHA Microcontroller Program

a. The Language

To ease programming and debugging of the Micro-

controller an assembly language called SMAL was created and

an assembler was written in PLM [4] by Assistant Professor

Gary A. Kildall [2]. The assembler runs on the Intellec 8

or Intellec 80 developmental system [5].

37

As an aid to reading a program written in SMAL,

the operators used in the language are reviewed here. For

more detail see Ref. [2],

Value Definition

Operator: =

Example: UP = 1

Assigns a value to an identifier.

Unconditional Jump

Operator: =:

Example: =: RECEIVE

The identifier to the right of the operator represents an

address for an unconditional jump to anywhere in the available

memory

.

Jump External

Operator: = :

:

Example: =:: JEXTABLE

The zero is just a placeholder. JEXTABLE is an address in

memory whose last four bits are zero. Since these four low

order bits are replaced xvhen the instruction is executed,

an unconditional jump to one out of 16 sequential locations

in memory occurs. If a sequence of JU commands is found in

these locations the effect is that of a "case statement."

38

Conditional Jump

Operator: =:

Example: RDR =: RECEIVE

The identifier to the left of the operator represents one

of 32 possible input lines, which is tested and if the test

returns true, a jump to the address indicated by the

identifier to the right of the operator is executed. This

address has to be on the same page in memory as the condi-

tional jump instruction. The above mentioned test returns

"True" if either the line tested is up or, with a minus

sign in front of the line name (-RDR =: RECEIVE), when it

is down, otherwise the test returns "False".

Note: * to the right of a jump operator (=:) indicates
looping on that instruction.

Example: RDR =: *

The loop is exited when RDR goes down.

Output Statement

Operator: :=

Example: SEL^l := RIDATA

The identifier to the left of the operator specifies one out

of 32 possible "devices". The identifier to the right

represents data which is displayed on the out bus, while the

indicated device is strobed for a 100 nanosecond time

interval.

Any line starting with a "/" is considered to

be a comment line and disregarded by the assembler.

39

b. The Program Logic

Both the RIHA program and a set of flowcharts

are included at the end of this thesis. The program with

its flowchart is structured according to its functions with

each function assigned a number shown at the entry points

of the flowchart pages and as a comment line in the program.

Figures 8 through 11 show graphs in which the

vertices contain the function number and represent the

functions and the directed edges (arrows) denote possible

transfer paths from a function to another according to

specific decisions made at the function.

In the following paragraphs these functions will

be interpreted. The flowchart page with the respective

function number at its entry point should be used as reference

START

INTERPRET

The program idles In this part. Its

attention may be called by either the

PDA (transfer to 2) or by the RI (transfer

to 10). Before starting a Receive Sequence

the issue of a Read Command by the channel

may be requested by raising the Interrupt

line .

This "function" determines, whether the

host wants to send a Local Command Message

(transfer to 30) or a Transmit Message

(transfer to 20)

.

HO

return from program

V

RECEIVE TRANSMIT
SEQUENCE SEQUENCE

start at fen. 10 start at fen. 20

JEX
TABLE
function 30

Fig. 8 . Directed Graph of Sequence Initiation

11

from START

V

return to START return to START

10 RECEIVE
13 SELECT
15 ADDSTATUS
16 RLSONE

17 RECOVER
18 RCVSECOND
19 RLSTWC

Fig. 9. Directed Graph. of Receive Sequence

i|2

10 RECEIVE

13 SELECT

16 RLSONE

19 RLSTWO

18 RCVSECOND

This part Is entered after the RI has

indicated that it has ready the next data

byte on the bus (RDR+). This byte is

received and the FIFO is checked. If it

is full, then the next operation has to

be a release of a 16-bit word to the PDA,

which is forced by a transfer to (16)

.

Should an overflow at the RI result from

this, it will be recorded in the Status

Byte by raising ROVR.

This is the central loop of the Receive

Sequence; either the RI (10) and the

PDA (16) may call for service.

One byte is locked into the Out Buffer.

If that empties the FIFO buffer, receipt

of a second byte is forced by a transfer

to (18). Otherwise go to (19).

Two bytes are ready for the PDA and are

released. If more data in FIFO, transfer

to (13) . Otherwise check whether message

ended, then transfer to (15) or force a

Receive by a transfer to (10).

Note: The rise of RDR after RCV dropped

is redefined to: Status Byte is valid.

Only entered from (16) if a second byte

is needed to form a 16-bit word for the

PDA. If the end of the message was reached

13

15 ADDSTATUS

17 RECOVER

(RCV+) a zero byte is written into the

FIFO, otherwise one byte is received from

the RI. No FIFO check Is necessary since

It had to be empty to get here.

Entered from (19) after message end.

FIFO is empty, Status Byte is valid and

loaded into FIFO followed by a zero byte.

Both are made available to the PDA as the

last 16-bit word, then EOR is raised,

which causes the PDA to signal channel

end and Device End Status to the I/O

channel.

Entered only if a Receive Sequence is

interrupted by the host by raising WC=0

before the whole message was through.

The RIHA causes a Receive Overrun (ROVR)

in the RI by waiting on RCV to fall.

l\k

INTERPRET

RECEIVE -s3

START

20 RINGOK
21 DLVTWO
22 WHONEXT
23 ACPTWO
24 DLVONLY
25 DLVSTATUS

Fig. 10 . Directed Graph of Transmit Sequence

45

20 RINGOK

21 DLVTWO

22 WHONEXT

23 ACPTWO

2k DLVONLY

After a Transmit Sequence is requested by

the PDA and the RI informed of it (XMIT+)

the program waits in this loop for the

ring to become available (first rise of

RID) . This Transmit Sequence may be

preempted by an incoming message destined

for the host (RCV+) and a transfer to (10)

occurs

.

Two bytes are delivered to the RI . If

this empties the FIFO the acceptance of

a 16-bit word from the PDA is forced by

transfer to (23)

.

Central loop of the Transmit Sequence;

either the RI(21) or the PDA(23) may call

for service. A test is made for Transmit

Overrun at the RI which cancels this

Transmit Sequence by a transfer to (20).

Entered after PDA raised WR; two bytes are

accepted. WC = up indicates end of

message, transfer to (24). If the FIFO

is full a delivery of two bytes is forced

by a transfer to (20) and (21) to make

room for the next PDA word.

If entered from (20): Transmit Overrun

has occurred, XMIT is taken down to

redefine RID to: Status Byte is valid.

If entered from (23): The rest of the

message is delivered to the RI ; then

transfer to (25)

.

46

25 DLVSTATUS Program is looping on redefined RID,

waiting for the Status Byte to become

valid; then the Status Byte is examined

by the RIHA for correctness and according

to the result either EOR or EOF is raised.

EOR indicates to the host:

Message transmitted and correctly received

at destination.

EOF indicates: Something went wrong, issue

a Status Request Message to get further

details .

47

FROM INTERPRET

30 JEXTABLE
31 WRITENAME
32 CLEARNAME
33 DISCONNECT

34 CONNECT
35 RESETRI
36 STATREQ

Fig. 11. Jump External

48

30 JEXTABLE

31 WRITENAME

32 CLEARNAME

33 DISCONNECT

34 CONNECT

35 RESETRI

36 STATREQ

Here the JEX instruction is used to

direct the program to the right program

part according to the Local Command

Message sent by the host.

(See CLEARNAME)

The second byte of the Local Command

Message containing the name of a process

is handed to the RI . According to the

state of the WRTN line, the RI deletes

that name from (WRTN4-) or inserts it into

(WRTNt) its list of valid processes.

Raises the DISC line and waits on the

Status Bit RDIS for reaction of the RI

.

Lowers the DISC line and waits on the

Status Bit RDIS for reaction of the RI

.

Raises RST for a minimum of 1.1 micro-

seconds .

Resets both FIFO counters. Causes a

Read Command if not yet outstanding and

transfers to (15) where the Status Byte

is made available to the PDA.

49

V. RECOMMENDATIONS AND CONCLUSIONS

A. RECOMMENDATIONS

The next steps to be taken after testing RI and RIHA

singly at low speeds, would be to combine them and program

available MCS-8 microcomputers [5] to simulate the IBM

Parallel Data Adapter on one side and the Ring on the other.

Internal improvements to the RIHA as seen by the author

would include:

1. A "Time-up" Circuitry, adjustable to various time spans,

that could be reset by the microcontroller with every

strobe of one of Its out lines. In case its preset time

should elapse, a recovery procedure could be started

and/or an indication to the outside could signal that

the program got caught in an endless loop.

2. To enable evaluation of the device's performance, a

number of counters could be strobed by the micro-

controller, according to instructions to that effect

placed at strategic points in its SMAL program.

B. CONCLUSIONS

The chosen approach, to modularize hardware and software,

has proven to be of great advantage. Two devices, the Ring

Interface [6] and the Ring Interface/Host Adapter (theses

w: tten at the same time), were implemented using the same

Microcontroller [1] and its language SMAL [2]. This provided

50

for better communication between all parties concerned and

Increased greatly the flexibility with respect to necessary

changes

.

The preliminary testing of the RIHA was done by manually

setting the control lines to test the various sequences.

According to its program and with an instruction cycle time

of 1.1 microseconds the RIHA should be able to handle data

in burst mode up to the following speeds

:

From PDA towards RI -Accept from PDA

-Deliver to RI

106 kilobytes/second

129 kilobytes/second

From RI towards PDA -Receive from RI

-Release to PDA

82 kilobytes/second

113 kilobytes/second

It thus seems reasonable to assume that the RIHA could

sustain a data rate of 50 kilobytes/second in both

directions.

51

<HCC£U> (OU-lOLWJ
sp^hmc^i-iwxwcc;

II
m a,

H

XT

o R
2 W
M 10

2
H

U5

-P
O
<D
-p
•H

o

<C

£h

x-\

rH
O
?HP
C
o
O
o
U
O

P
<m
o

6

bO
a
•H
Q

o
o
iH

C\J

iH

to
•H

52

15 1? 12 8 ?

OUT: unit select data out

JU: 1 page number location

JT: 1 1 input select location

JF: 1 1 input select location

Fig. 13. The Microcontroller Instruction Format

53

5M^^!cl«3r^a 5MaSHS

o
xo

I

n

3fc

8
,0 - o

o O c>

1?

V

-4-

<

;

'

:

I

f

f>W-

,

j uln'rl

Vn 00

S3

IS"

N 6> C* 4

>+• S' A" vl-

^ ^ S 5

d„ oft

ft-

-<iu

K mi
$
£

&

Ml

r\l

V)

- Nlf)

A-

|r> k-j

1

>.
-j

3
o

5

vV

no Uj

S

I
It!

K

CD

^ hi
(A K

"I

I
x

5 K

a ^VV

4

t^H
w

U)

U

-P

c

<D

-P
X
w

&
1-3

faO

•H

55

°
(

OS L. r

D
£ U

Z o -1

i-4°

P=

lis,

r-ce o

O

N

—I

N

IT)

—

I

N

3:

©
N

•J M

a
N

tf

2

2:

.4

N

P-*

V3

N

^ M

>- N

15

ol

in N
3

OS

t*» N
>-

•r
^J c4

-i N
~±

5
N

a?

r
ft

M

pr1

55

^
-I

N

^

to
<**

N

—

i

g N
in

rs 3

M
rt

3!

H

*"

M--

1

or

-i

60

N

N

-< N

P.
H to

N

3
»0

M

^
00

N

>^
-0

T5
?H

nJ

o
CQ

H

O

-P

O

H

faO

•H
[x.

56

-4

t*r

-A

ff-

rt
1 N

o

N

oo

k*
NI

-4

o

r
N

(si

-4

-I

r
r

o

p
c
o
o
o

o

<
H

Kl N
i/>

_N fvj

en
N

U
N

.H N

<si

K>

N

4-

N

N
^

O

-P

o
>,
a

bO
•H

>C >*
N

57

Ss? nSfff - - 4 * o e

nil wHwrniTrn i

f.
' U l> » -. j-i x. -» J •* "*

itti T7TTT7TT

irnn ixirrni rrrri n

0,'tV-

HsCgH
T< 6

I 2

Can
5*1

CE

w*

^6
*4 at

C3

! I K i
4 J J 4

~a
—

~

' 'N „

S s

c—

-

r^ S-P

1

I?

s

n

1^ "g

-2

T T

34?

11

3
3

-43
nT N I

V

a
-^pT

:|

i

\~ ^r
n

o u-i

X
Ui

y P- T
1>
jV-

?
3= -c. 4

i tj
\

«r V
»-J

-^ (^ u

H
>j
?H

-P
•H

O

•H
O
<
H

00

•H

58

11 XXII 11

ixm
VI Ul (^ M p

SS723JJ5G
K S 3 5

mrr rm iim iiiihi"IT
-I X

Is
5 3 a«g

A UJ w

* K o
ft pf ft «| «1

r O •*" ^ £ (3 v4

i^j 4-i Aa A
5 f>

ft* Sa
ft*
fCN

11 13 11 11
_-b

I I I S > 1

4 ^ jj lj 1| jj , 4-i

13 5^ r- Kt

ft*
5*

ii-tauiiiifi

o
<
DC

<

oo

i

4-4 Aa Aa ,4-i 4j 4d 4^
.

fiB
ft N it* fS

if J 5?
ft N

ft i

11 11 11 11 11 ii il

nrnm mm-figs
Ji'lf i« Ja "3. t* i «* "3

t

_1
\- Ft

q
1/1

i,'

£
X

£
uJ f*

-

-/

^ P- v
i

O
P-

>- :z -?
'*-

f*
V^J

H
H
>>
U
-P
«-i

O
UH
O
<$

H

H

•H
P<4

59

Microcontroller "IN" Lines

Microcontroller "OUT" Lines

Microcontroller RIHA
Board Board

WS 5 17

RS 6 19

WR 7 21

RR 8 2 3

wc=o 9 25

CNTUNEQAL 12 33

STATUSOK 13 35

RCV 31 69

RDR 30 71

RID 29 73

S3 28 75

S4 27 77

R4 45 66

R5 46 68

R6 47 70

R7 48 72

WCNT 51 18

RCNT 52 20

SETB 53 22

SEL41 60 41

SEL21 61 43

ERASE 62 45

FIPORW 63 47

STR0BE41 64 49

DEMSET 70 57

EORSET 71 59
61EOFSET 72

INTRPTSET 73 63

XMITSET 76 85
87HDRSET 77

HASET 78 89

APNSET 79 91

WRTNSET 80 93

DISCSET 81 95

RSTSET 82 97

DO 90 90

Dl 89 88

+5Volt 99 99

+5Volt 100 100
—

s

GND 3 3
4GND

'

4

Figure 20. RIHA Pin Assignments

60

START

yes

ERASE
FIFO

INTERRUPT

+ +

yes

RECEIVE

INTERPRET

61

INTERPRET

1ST BYTE
TO FIFO

2ND BYTE
TO FIFO

includes INC WCNT

62

WRITE FIFO
INC WCNT

63

SELECT

6^4

RLSONE

yes

SET BUFF
INC RCNT

yes

yes

17 > RECOVER

18 > RCVSECOND

65

RLSTWO

DEMAND

INC RCNT

yes

HA

4-

|
ADDSTATUS

66

RCVSECOND

ZERO
MPLX

WRITE FIFO
INC WCNT

RLSTWO

WRITE FIFO
INC WCNT

67

ADDSTATUS

RI -STATUS
INTO FIFO

ZERO-BYTE
INTO FIFO

68

RECOVER

17

RCV
yes

no

RDR
.no

yes

RDR
yes

no

69

RINGOK

DLVTWO DLVONLY

INTERRUPT

70

DLVTWO

HDR
4-

SET BUFF
INC RCNT

71

WHONEXT

72

ACPTWO

DEf4AND

+ +

yes

yes
20 > RINGOK

73

DLVONLY

no

SET BUFF
INC RCNT

HDR

DLVSTATUS

no

yes

7^

DLVSTATUS

75

WRITENAME

CLEARNAME

START

76

DISCONNECT

CONNECT

77

STATREQ

RESETRI

78

/ RIHA MICROCONTROLLER PROGRAM

/ OUTPUT BUS DATA ASSIGNMENTS

WRITE =
READ = 1
PULSE =
UP = 1

DOWN =
FIRSTBYTE =
SECONDBYTE = 1
RIDATA = 3
RISTATUS
JEXTABLE
/ OUTPUT
WCNT =

RCNT = 1

SETS = 2
SEL41 =

= 2
= OFOH
PORT NUMBER ASSIGNMENTS

SEL21 = 10
ERASE = 11
FIFORW = 12
STR0BE41 = 13
DEMSET = 19
EOPSET = 20
EOFSET = 21
INTRPTSET = 22
XMITSET
HDRSET
HASET =
APNSET
WRTNSET
DISCSET
RSTSET
/ INPUT
STATUSCK
CNTUNEQAL
WCZERO =

RR = 12
WR = 13
RS = 14
WS = 15
RCV =21
RDR = 22
RID = 23
S3 = 24
S7 = 25

= 25
= 26
27

= 28
= 29
- 30

= 31
PORT
= 7

NUMBER ASSIGNMENTS

11
8

/ PROGRAM START

SEL41
SEL21
ERASE
FIFORW
STR0BE41
DEMSET
EORSET
EOFSET
INTRPTSET
XMITSET
HDRSET
HASET
APNSET
WRTNSET
DISCSET
RSTSET

DOWN
DOWN
DOWN
UP
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN

79

/

START, ERASE :
-.
= UP

ERASE • -= DOWN
IDLE, WS = WAITXMIT

-RCV - IDLE
RS = WAITONRI
INTRPTSET :

:

= UP
INTRPTSET : z= DOWN

WAITONRI, -PDR =
, *

= RECEIVE
WAITXMIT, -WR =

;

=
. INTERPRET

/ 2

INTERPRET, SEL21 : WRITE
SEL41 = FIRSTBYTE
FIFORW = WRITE
FIFORW = READ
WCNT = PULSE
SEL41 = SECCNDBYTE
FIFORW = WRITE
FIFORW = READ
WCNT : PULSE
WCZERG =

:

CONTRQLMSG
DEMSET = UP
DEMSET = DOWN
WR =

XMITSET - UP
=

; . RINGGK
CONTROLMSG, EORSET J := UP

ECRSET • -= DOWN
WS =

;
~Z

= < UEXTAGLE

/ 10

RECEIVE, SEL21 = WRITE
SEL41 = RIDATA
FIFORW = WRITE
FIFORW = READ
WCNT PULSE
HASET = UP
RDR = -J,

HASET • —
• DOWN

CNTUNEQAL =
: SELECT

—
, . RLSGNE

/ 13

SELECT, -RCV = SELECTRLS
RDR —

, RECEIVE
SELECTRLS, -PS = SELECT

RR =
. RLSONE

=
: SELECT

/ 16

RLSCNE, -RR =
:

*
WCZERO
SEL21
SETB
RCNT
CNTUNEQAL =

RECOVER
READ
PULSE
PULSE
RLSTWO
RCVSECONO

80

/ 19

RLSTWO,

RCVEND,

SEL21 ; = READ
DEMSET : = UP
DEMSET ; = DOWN
RR — • #
RCNT • — PULSE
CNTUNEQAL — - SELECT
-RCV • • RCVEND
-PDR = j

4*

RECEIVE
-RDR m~ • *
HASET • — UP
RDR — • *
HASET DOWN

— • ADDSTATUS

/ 18

RCVSECOND, -RCV — m ZEROBYTE
^RDR =

:

*
SEL21 i = WRITE
SEL41 m —

R I DATA
FIFORW • — WRITE
FIFORW • — READ
WCNT • " PULSE
HASET • ~~ UP
RDR — • *
HASET DOWN

= ; RLSTWO
ZEROBYTE, SEL21 s = WRITE

STROBE41 l = UP
FIFORW i — WRITE
FIFORW : = READ
WCNT ; = PULSE
STR0BE41 • = DOWN

— • RLSTWO

/ 15

ADDSTATUS, SEL21 j = WRITE
SEL41 : = RISTATUS
FIFORW : = WRITE
FIFORW : = READ
WCNT ; := PULSE
STR0BE41 ; = UP
FIFORW ; = WRITE
FIFORW : = READ
STR0BE41 ; r DOWN
WC NT : = PULSE
SEL21 : = READ
SETB : = PULSE
RCNT ; = PULSE
-RR — •— •

DEMSET : = UP
DEMSET : = DOWN
EORSET ; = UP
RS =

:

*
EORSET — DOWN
RCNT • -- PULSE

~~ • START

81

/ 17

RECOVER, RCV
-RDR
HASET
RDR
HASET

= : *
= : *
:= UP
— • ^
:= DOWN
=: START

/ 20

RINGOK, RID =: J DLVTWO
S3 * DLVONLY
-RCV - J RINGOK
INTRPTSET !

— UP
INTRPTSET '. ~ DOWN
ERASE ,

= UP
ERASE .

— DOWN
XMITSET : ,

s DOWN
-RDR ~ • ***

: : RECEIVE

/ 21

DLVTWO, SEL21 : * READ
SETB • —

-

• — PULSE
PC NT * — PULSE
HDRSET : = UP
RID = ;

HDRSET • _
• — DOWN

SETB • —
• — PULSE

RCNT I — mil c r.

-RID = :

HDRSET • = UP
RID = • *
HDRSET • = DOWN
CNTUNEQAL — • WHONEXT
-WR — • •r

=

:

ACPTWO

/ 22

WHONEXT, RID
S3
WR

DLVTWO
RINGOK
ACPTWO
WHONEXT

/ 23

ACPTWO, SEL21
SEL41
FIFORW
FIFORW
WCNT
SEL41
FIFORW
FIFORW
WCNT
WCZERn
DEMSET
DEMSET
WR
CNTUNEQAL

WRITE
FIRSTBYTE
WRITE
READ
PULSE
SECOMDBYTE
WRITE
READ
PULSE
DLVONLY '

UP
DOWN

WHONEXT
RINGOK

82

/ 24

DLVCNLY, SEL21 • — READ
SETB • ™" PULSE

TESTRID, RID — • NOXOVR
S3 — - XMITEND

- z TESTRID
NOXCVR, HDRSET z = UP

RID = z *
• HDRSET • — DOWN

RCNT • — PULSE
CNTUNEQAL =

:

DLVONLY
XM1TEND, XMITSET ; = DOWN

"• • DLVSTATUS

/ 25

DL VST AT US, -RID -•
j

J,

-STATUSOK =

:

EXCEPTION
EORSET • •" UP
EORSET * — DOWN

WSTEST, WS
= c START

EXCEPTION, ECFSET • — UP
EOFSET • = DOWN

= t WSTEST

/ 31

WRTTENAME, WRTNSET • —
• — UP

/ 32

CLEARNAME, RCNT ; = PULSE
SEL21 • — READ
SETB • — PULSE
APNSET ; =: UP
-RID — •— • *
WRTNSET • _ DOWN
APNSET * _

• — DOWN
RID = z

<JL-
1-

~ z START

/ 33

DISCONNECT, DISCSET • * UP
-S7 =

:

= z START

/ 34

CONNECT, DISCSET * ~ DOWN
S7 ™~ *

~-

«

START

/ 36

STATPEQ, ERASE • UP
ERASE ; = DOWN
RS = ; ADDSTATUS
INTRPTSET ; = UP
INTRPTSET : = DOWN
-RS s i *

- : ADDSTATUS

83

/ 35

RESETRI » RSTSET
RSTSET

UP
DOWN
START

/ 30

JEXTABLE, WRITENAME
CLEARNAME
DISCONNECT
CONNECT
STATREQ
RESETRI

$$

84

BIBLIOGRAPHY

1. Brubaker Jr., R.H., A General Purpose Microcontroller ,

paper prepared at Computer Science Group, Naval
Postgraduate School, Monterey, California, March 197**.

2. Kildall, G.A., A Symbolic Microcontroller Assembly
Language , Computer Science Group (Internal Document),
Naval Postgraduate School, Monterey, California,
April 197^.

3. Hirt, K.A., A Prototype Ring-Structured Computer
Network Using Micro-Computers , Masters Thesis, Naval
Postgraduate School, Monterey, California 1973.

H. Intel Corporation, A Guide to PL/M Programming ,

September 1973.

5. Intel Corporation, MCS - 8 Microcomputer Set , User's
Manual, November 1973.

6. Harris, M.S., A Prototype Ring Interface for the NPS
Data Communication Ring , Masters Thesis, Naval Post-
graduate School, Monterey, 197^.

7. IBM System /36O I/O Interface, Channel to Control
Unit, OEM Information, A22-6843-3.

8. IBM 2701 Data Adapter Unit, OEM Information,
GA22-6844.

9. IBM 2701 Data Adapter Unit, Component Description,
GA22-6864.

85

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 2231^

2. Library, Code 0212 2

Naval Postgraduate School
Monterey, California 939^0

3. Chairman, Computer Science Group, Code 72 1

Computer Science Group
Naval Postgraduate School
Monterey, California 939^0

4. Asst. Prof. R. H. Brubaker,Jr. Code 72Bh 1

Computer Science Group
Naval Postgraduate School
Monterey, California 939^0

5. Prof. G. Barksdale, Code 72 1

Computer Science Group
Naval Postgraduate School
Monterey, California 939^0

6. Marineamt-Al-
294 Wilhelmshaven
Federal Republic of Germany

7. Dokumentationszentrale der Bundeswehr (See) 3

53 Bonn
Friedrich-Ebert-Allee 3^

Federal Republic of Germany

8. LCDR Eberhard 0. Wortmann, FGN 3

239 Flensburg
Beethovenstrasse 17
Federal Republic of Germany

86

22 JOl If,

2 i

2 3 I tt 8

Thesfs 1538G8
W8754 Wortmann

Design and implementa-
tion of a ring inter-
face/host adapter for an
IBM system 360.

c.l

22 JUL 76 23748

Thesis
W8754
c.l

153388
Wortmann

Design and implementa-
tion of a ring inter-
face/host adapter for an
IBM system 360.

thesW8754

Design and implementation of a ring inte

3 2768 001 90642 3

DUDLEY KNOX LIBRARY

